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ABSTRACT

Computer simulation results are pres_ on the performance of eonvolu-

tlonal codes of constraint lengths 7 and i0 concatenated with the (255, 223)

Reed-Solomon code (a proposed NASA standard). These results indicate that as

much as 0.8 dB can be gained by concatenating this Reed-Solomon code with a

(i0, 1/3) convolutional code, instead of the (7, 1/2) code currently used by

the DSN. A mathematical model of ViterbI decoder burst-error statistics Is

developed and is validated through additional computer simulations.
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SECTION I

INTRODUCTION

The purpose of this report is to present new results on the combined per-

formance of short constraint length Viterbi-decoded convolutional codes and

Reed-Solomon codes. When one coding scheme is superimposed upon another, the

resulting combination is called a concatenated code. Those interested in

learning about these coding schemes can find elementary presem:ations in

Reference I-i. Our interest is in their performance.

The DSN currently has both (7, 1/2) and (7, 1/3) Viterbi decoders. The

performance of several convolutional codes of rates 1/2 and I/) with con-

straint lengths between 7 and i0 have been known for some time (References 1-2

and 1-3). At the time that the DSN Viterbi decoders were bull:, hardware

speeds were not fast enough to build Viterbi decoders of const_:aint lengths

beyond 7 that were sufficiently reliable and inexpensive. However, with

current and expected technological advancements in mind, we have given another

look at the possible performance of Viterbi decoders of constraint length i0

and rates 1/2 and 1/3.

This report not only extends previous Viterbi performance results, but

also contains new performance results for convolutional codes concatenated

with a (255, 223) Reed-Solomon code. (The performance of the DSN (7, 1/2)

code concatenated with this Reed-Solomon code appears in Reference 1-4.) The

Reed-Solomon bit-error probability depends not only on the (average) Viterbi

b,t-error rate, but also on the lengths of the Viterbi error bursts and the

density of the errors within the bursts. Consequently, additional simulations

are required to gather these statistics.

The Galileo Project and the international Solar Polar Mission are plan-

ning to employ a concatenated Reed-Solomon/Viterbi coding scheme for teleme-

tering science and enEineering data over the space communications channel.

Even the Vov;_ger mission has this capability on board. The reason for using a

concatenated coding scheme over convolutional codin_ alone is that concatenated

codin_ mak_,s more efficient use of signal power to achieve bit-errant probabili-
-5

ties in the: lO range. Such low error rates are necessarv to make data com-

pression schemes workable. Data c_mpression algorithms, while promising to

remow, substantial informati,m redundancy, are w,r¢ sensitive to trans-

mission errors. In terms of cost vs benefits, a 0.8-dB (20%) improvement

1-1



from coding is comparable to the increased performance of a 64-m and 34-m

array over a 64-m antenna alone. However, the cost of implementing such a

coding scheme is not more than the cost of the electronics to array such a

pair of DSN antennas.

A block diagram of a concatenated coding system is shown in Figure i-i.

Binary data generated on board the spacecraft are first encoded by the

Reed-Solomon encoder. This encoder also interleaves the Reed-Solomon symbols

so as to minimize the effect of error bursts on individual Reed-Solomon code-

words. After this first level of coding, the data pass to the convolutlonal

encoder. The modulators convert these binary data to a phase-modulated

radlo-frequency signal, which is amplified and sent out towards the Earth.

Two modulation stages are actually performed in the transmitter. The binary

data are first multlplled by a square-wave subcarrier, and then the resulting

waveform is used to phase modulate a high-frequency sinusoidal carrier.

On the ground, the analog signal is detected and tracked by the

receiver. A carrier reference is derived and is used to heterodyne the signal

to subcarrler frequency. The subcarrler demodulator assembly (SDA) removes

the square-wave subcarrler, and the symbol synchronizer assembly (SSA)

attempts to recover the original coded bit stream. Due to channel noise (and

other degradations caused within the receiver system), the SSA does not output

the original binary sequence. Instead, it outputs a stream of quantlzed

estimates of these bits. The Viterbi decoder takes these estimates as inputs

and decodes the convolutlonal level of the coding. The Reed-Solomon decoder

then delnterleaves the symbols and does the final decoding.

For the purpose of this report, only signal degradation caused by the

Gausslan noise of the space channel is assumed. The comparisons made here

should remain valid when additional system degradations are included. The

simulations assumed that there are no losses from carrier and subcarrler

tracking and demodulation, and that the Viterbi decoder retains node syn_hrt_-

nization at all times. Studies of these degradations are being underta[en

and the results will appear in future publications.

1-2
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SECTION II

SUMMARY

Figure 2-1 indicates the performances of several decoding schemes as a

function of blt-energy-to-nolse ratio. In particular, it shows the relative

performances of several Viterbi-decoded convolutlonal codes including the (7,

1/2) code, which is the present standard for deep-space applications. Also

shown in Figure 2-1 are Shannon's theoretical performance limits for rate 1/2

and rate 1/3 binary codes and the performance of uncoded transmission. The

Shannon limits represent the best possible error performance for binary codes

of these rates (Reference 2-1). It is easily seen that the (7, 1/2) code is

2.3 dB away from the theoretical limit at an error probability of 5 x 10-3 .

Also, the (i0, 1/3) code is less than 2 dB from Shannon's limit for rate 1/3

binary codes.

Also shown in Figure 2-1 are the results of concatenating these convolu-

tlonal codes with an outer Reed-Solomon (255, 223) code. Ideal interleaving

is assumed as well as no system losses other than Gaussian channel noise. The

performance of the concatenated scheme is very sensitive to slgnal-to-nolse

ratio (SNR); a l-dB change can result in a bit-error probability jump of

several orders of magnitude. Consequently, the use of such a concatenated

scheme should be accompanied by tight control of the signal-to-nolse ratio of

the communications link. Otherwise, the additional operating margin may

negate the advantages derived from coding.

In addition to these error performance curves, a mathematical model of

the burst-error statistics of Viterbl decoding is developed in this report.

The model generates errors similar tc those of Vlterbl decoders by using a

simple "Monte Carlo" technique. All that is needed to apply the model are

three parameters that depend on the particular code and channel SNR. These

parameters are tabulated in this report (see Appendix C) for several different

convolutlonal codes and channel SNRs. The error sequences generated by this

model are shown to behave similarly to actual error sequences when both are

used to generate Reed-Solomon performance curves. The advantage of the model

is that it may be used to generate Viterbi error sequences quickly and Inex-

pensively for use in simulations when a very large amount of data is needed.

2-1
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SECTION III

SIMULATED PERFORMANCE OF SEVERAL CODING SCHEMES

The key to computing the performance of the concatenated coding system is

determining the Reed-Solomon symbol-error statistics. This information cannot

be deduced from Viterbi blt-error performance curves. Consequently, extensive

simulations were performed on the Xerox Data Systems Sigma 5 computer to cal-

culate both the Viterbl blt-error and Reed-Solomon symbol-error statistics.

Each data point was generated by processing 900,000 bits through a modifica-

tion of the software ViCerbl decoder developed by J.W. Layland. The simula-

tions assumed that there were no system losses due to receiver noise or lack

of synchronization. The only degradation present in the simulation was that

of the random number generator slmulatlng additive white Gausslan noise to

reflect the channel SNR. Also, sufficient Reed-Solomon symbol interleaving

was assumed so that the symbol-error events were independent. This is

referred to as ideal interleaving. It is worth noting that interleaving to a

der " 5 is nearly ideal for the DSN (7, 1/2) inner convolutional code at

SNh: _ ove 2.0 dB.

Figure 3-1 shows the results of these simulations. In addition to the

plots of Viterbi bit-error probability, p, as a function of channel SNR,

(Eb/N0) , each part of Figure 3 displays the Reed-Solomon symbol-error

probability, _. The Reed-Solomon bit and word-error probabilities are calcu-

lated from _ and other burst statistic information derived from these simula-

tions. These calculatlons and the theory behind them are described in detail

in Appendix A. The Reed-Solomon performance curves are plotted against a

concatenated channel SNR, which is 0.5_ dB greater than that of the Viterbl

channel due to the overhead of the Reed-Solomon parity symbols.

3-1
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SECTION IV

A GEOMETRIC MODEL OF VITERBI BURST-ERROR STATISTICS

The software simulations described in Section III produced a large amount

of Viterbl decoder burst-error statistics, which were then studied. It was

found that Viterbi decoder error bursts, as well as waiting times between

bursts, were very nearly geometrlcally distributed.

Three parameters are needed to define these distributions. They are the

average burst length, B, the average waiting time, W, and the average density

of errors in a burst, 8. Given these parameters, Vlterbl decoder burst

lengths, B, were observed to be distributed according to

pr(B = m) = p(l - p)m-i (m > O)

where

p --IIB

Errors within bursts occur randomly with probability 8.

observed to be distributed according to

Waiting times, W, were

pr(W = n) = q( I- q)n-K+l (n Z K - I)

where K Is the constraint length of the code and

q = ]I(_- K + 2).

Derivations of these formulae may be found in Appendix B.

A Monte Carlo software routine was written to generate Vlterbi error

sequences directly from these formulae. The advantage of doing this is that

the Viterbi software decoder requires about 2K-7 hours per milllon bits of

computer time (XDS $1gma-5 computer), while the geometric model requires an

average of five minutes per billion bits.

4-1



To validate the geometric model, Reed-Solomonword- and bit-error rates

were calculated using both the Viterbi software decoder and the geometric model

routine. No interleaving was used so that the effects of the error bursts

appeared to the maximumextent possible. These results were comparedand
are shownfor various codes in Figure 4-1. (Someof the curves exhibited in

this figure run off the edge of the page since the next data point was too

low to be plotted on the samescale.) It is easily seen that the geometric
model closely approximates the actual data in all cases.

4-2
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SECTION V

CONCLUSION AND DISCUSSION

The software model of the Viterbl decoder used in this study can be

enhanced by the inclusion of some of the system losses that arise in actual

hardware devices. By adding these degradations to the model, their effects

can be studied and possible remedies can be incorporated into future system

designs.

The Vlterbi decoders currently used by the DSN suffer loss of node

synchronization at low SNRs. This means that if the signal is too weak, the

decoder cannot decide which of the two code symbols associated with each data

bit should be first. The concatenated coding system described in this report

allows transmission of data at SNRs lower than those required for a convolu-

tlonal-only scheme. This means that node synchronization losses will be

higher in the concatenated scheme.

Synchronization problems are also associated with the Reed-Solomon code.

A method for determining Reed-Solomon symbol and word boundaries is needed.

If a packet telemetry system such as the one proposed by the End-to-End Infor-

mation System (EELS) (Reference 5-1) is to be implemented, then a frame

synchronization device is also required.

For this report, only the error correcting capability of the Reed-Solomon

code was considered. However, this code is also capable of correcting a

number of erasures, i.e., Reed-Solomon symbols that are suspected to be in

error. The (255, 223) code can correct E errors and e erasures in each code-

word as long as 2E + e < 33. If erasures can be detected, then the perform-

ance of the concatenated codes may improve by as much as 0.3 dB.

It should be noted that the loss of node synchronization and subsequent

recovery by the Viterbl decode_ may cause a deletion or insertion of a bit

into the data stream entering the Reed-Solomon decoder. When this occurs,

Reed-Solomon symbol and word synch will be lost. In the proposed EElS packet

telemetry scheme, a node synch failure could result in a loss of over 8000

information bits. Consequently, the sensitivity of the concatenated coding

to node synchronization losses is potentially greater than that of convolu-

tlonal coding alone.

5-1
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The effects of carrier, subcarrler, symbol, and bit tracking in the sys-

tem are also important to the overall performance of the coded channel since

poor carrier tracking increases the number of Vlterbl decoder bit errors.

The strict error-rate requirements of data compression are a major reason

for investigating concatenated coding schemes. These requirements stem from

the removal of redundant information, hence compression. As an example, one

data compression scheme (Reference 5-2), reduces the number of bits per

picture by over one half without loss of information. The reconstructed

compressed data, however, are more sensitive to transmission errors than the

Original data. Hence_ error correcting codes must be used. Notice that the

concatenated schemes described in this report more than double the number of

bits that are transmitted per information bit. This seems to neutralize the

useful effects of data compression. Actdally, this is not the case since an

SNR of 9.5 dB would be required if no coding were employed to achieve an error

rate of 10 -5 (see Figure 2-1), whereas the concatenated scheme with the (7,

1/2) inner code requires ouly 2.3 dB, and only 1.6 dB is required when the

(i0, 1/3) inner code is used. It might be beneficial to consolidate clara

compression and channel coding into a one-step pro_ess.

5-2



APPENDIX A

EXPLANATION OF SIMULATIONS AND CALCULATIONS

It is well known that the bit errors produced by Viterbl decoding in the

presence of noise are not independent. Instead, they tend to group together

in error clumps known as "bursts." This happens because error evants in a

Viterbl decoder are caused by excursions from the correct path in the code

trellis structure (Reference 1-1). The calculation required to generate the

performance curves of Section III required a careful tabulation of these error

bursts for the various convolutlonal codes under consideration. The theory

behind these calculations is outlined in this section.

A. THE DEFINITION OF "BURST"

Denote the constraint length of the convolutional code under considera-

tion by K. Consider a sequence of bits output by the Viterbl decoder of the

form

K- 1 B K- 1

ccc.-.c e xxx...x e ccc...c

where the letter c represents a correctly decoded bit, an e represents a bit

error, and an x may be either correct or In error. Suppose also t_at there is

no string of K - I consecutive c's in the sequence xxx-x. Then the string

exxx..xe is called a "burst" of length B. The motivation behind this defini-

tion of a burst is that a string of K - 1 consecutive correct bits will return

the Viterbl decoder to the correct decoding path. A string of c's between two

bursts will be referred to as a "waiting time."

B. THE CAI.CUI,AT[O_ OF p and

The calculation of the Vlterbl blt-error rate, p, by the Viterbl software

decoder amounts to simply counting the number of bit errors made and dividing

by the total number of bits examined. The calculation of the Reed-Solomon

input symbol error probability, r, is more involved and is described below.

A-I



The Reed-Solomon code considered in this report has code words consisting

of 255 elght-blt Reed-Solomon symbols. The quantity _ is therefore the

probability that a set of eight consecutive Viterbl-decoded bits contains at

least one error. If Viterbl bit errors were independent, one would expect

= i - (i - p)8. However, Viterbl bit errors are certainly not independent

and, in fact, this estimate for _ is more than double the correct value for

small p.

One way to obtain a good estimate for • is to partition the output bit

stream of the Viterbl decoder into disjoint sets of eight consecutive bits and

observe how many of these sets contain bit errors. However, since no a priori

knowledge of symbol synchronization is assumed in these simulations, it is

better to average over all sets of eight consecutive bits. This amounts to

sliding a window of size eight over the output of the Viterbl decoder. The

actual algorithm used in the simulations is as follows.

Suppose n bits are decoded by the Viterbl decoder. Then the number of

symbol errors should be n m/8. On the other hand, a burst of length B will

corrupt, on the average, (B + 7)/8 symbols. Since waiting times are of length

at least K - i, and K _ 7 for this report, it is extremely rare for two

bursts to corrupt the same symbol. If there were N bursts of length

Bi (i ! i _ N), then

N

Z BI+7number of symbol errors =

ill

N
-._ (B+ 7)

where _ is the average burst length. It follows that

. N(_ + ,7,).
n

(A-l)

if 0 is defined as the average density of errors in a burst, then Equation

(A-I) may be rewritten in the form

^-2



7N+P
n 0

The quantities n, N, p, and e are easily tabulated by the software Viterbi

decoder.

C. ESTIMATION OF UNCERTAINTY IN THE CALCULATIONS

Since only a finite number of bits may be examined in any simulation, it

is advantageous to have a measure of how well the estimates of p and

described above reflect their actual values. Again let N be the number of

bursts observed. Let X I be the number of bit errors in the ith burst

(i _ i _ N). Assume that the Xi's are independent and identically dis-

tributed (i.l.d.) with first and second moments E(X) and E(X 2) respec-

tively. Assume also that N is Polsson distributed with mean % and that N is

independent of each X i. The the number of bit errors observed is

N

SN = _ Xi"

i=l

In Reference A-I it is shown that

E(SN) ,, E(N)E(X)

and

Var(SN) = E(N)Var(X) + (E(X))2Var(N).

Since N is Poisson, E(N) = Var(N) = % • Let _ = O(SN)IE(S N) be the

fractional uncertainty in the measurement of SN. Then the quantities E(X),

E(X2), and % are estimated by the software Viterbl decoder to give an

estimate of _.

To estimate the uncertainty in the calculation of _, let Bi be the

length of the ith burst and let TN be the number of symbol errors

occurring in N bursts. From Equation (A-l) it follows that
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N

TN -_ (S i + 7)
i=l

so that

E(TN ) . _(7 +8E(B))

and

Var(TN) _4 (49 + 14E(B) + E(B2)).

If 7 = o (TN)/E(TN) is the fractional uncertainty in the calculation of

, then

i /49 + 14E(B) + E(B 2)

7 ffi7 + E(B) "_

As before, E(B) and E(B 2) are easily tabulated by the software Viterbi decoder.

Figure A-I shows plots of p and _ (the same as those in Figure 3-1)

with error bars representing the uncertainty in their calculation included.

D. REED-SOLOMON WORD ERROR PROBABILITY, Pword

To calculate the Reed-Solomon word-error probability, sufficient symbol

interleaving is assumed so that the symbol errors may be considered to be

independent. Since a word error occurs exactly when there are 17 or more

symbol errors in a 255-symbol word,

255

Z .255. eJ )255-JPword = ( J ) (I - # .

J=17

A-4



T T r T T T

(a)

10-1

=

10-2

10"3

10.4

10 -5

REED-SOLOMON
SYMBOL ERROR
PROBABILITY (_')

VITERBI
BIT ERROR

PROBABILITY (p)

I 1 1 I I I
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

El= N 0, dB

Figure A-I. Performance Statistics of Viterbl Decoder (Assuming No System

Losses): (a) 32330[3 (7, I/2) Convolutional Code; (b) 7376137

(7, 1/3) Convolutional Code; (c) 3|03320323 (I0, 1/2) Conw_lu-

tional Code; (d) 7461776427 (I0, I/3) Convolutional Code

A-5



,.=.

10-1'

10-2

Cb)

VITERBI
BIT ERROR
_'ROBABILITY (o)

Eb NO, dB

REED-SOLOMON
SYMBOL ERROR
PROBABILITY ('n-)

\

3.0 3.5 4.0

Figure A-I (contd)

A-6
t



>-

Ck.

(c)

10"_

i0-_:

10"4

10"51

0.5

VITERBI

l
1.0

BIT ERROR
PROBABILITY (p)

l I
2.0

Eb NO, dB

REED-S OLOMO N
SYMBOL ERROR
PROBABILITY (_r)

4.0

7igure A-I (contd)

A-7



i I I i

(d)

10-I

..4

=

0

VITERBI
BIT ERROR
PROBABILITY _o)

REED-SOLOMON
SYMBOL ERROR
PROBABILITY ('rr)

10-4

Figure A-I (contd)

4.0

A-8



E. REED-SOLOMON BIT-ERROR PROBABILITY, Pblt

Let B and e be the average burst length and the average density of

errors in a burst, respectively, for the convolutlonal inner code in

question. If a Reed-Solomon word error occurs, then between 17 and 255

symbols are in error. Recall that the average number of symbols corrupted by

a burst is (B + 7)/8. Hence the blt-error probability in a corrupted symbol

i is 8B/(B + 7). If follows that

Pbit (255)( j ) _J(1 - _ .

j=17
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APPENDIX B

DERIVATION OF THE GEOMETRIC MODEL OF BURST STATISTICS

A random variable X is said to be geometrlcally distributed with

parameter pc[O, 1] if

pr(X - s) = p(l - p)S (s = O, i, 2, ...).

For the purposes of this section, a random variable Y satisfies a "modified

geometric distribution" of parameter pc[O, i] if there exists a positive

integer d such that

pr(Y = s) = p(l - p)S-d (s - d, d + i, d + 2, ...)

In this case, Y will be called d-geometrlcally distributed.

In Reference B-I, J. Omura showed by a random coding argument that burst

lengths for an "average convolutional code" have a distribution that may be

overbounded by a 1-geometrlc distribution. In this report, it will be shown,

in fact, that for convolutlonal codes of constraint lengths seven through ten,

burst lengths are very nearly l-geometrlcslly distributed. Moreover, the

waiting times are K - 1 geometrically distributed.

The tests that were used to exhibit these facts were essentially the same

for burst lengths and waiting times. For this reason, only the test for burst

lengths will be described below.

Suppose that a Viterbl decoder simulation is performed and N bursts are

observed. Let B i be the length of the ith burst (i = I, 2, 3, ..., N).

Let B be the random variable representing burst length (so B i is the ith

sample of the random variable B). It must be shown that

d

pr(B i - s) = p(l - p)S-I (s = 1, 2, 3, • ) (B-l)

for some pE[O, 1]. The fact that these probabilities must sum to one forces

p - II_.

For each m - i, 2, 3, .., let Nm be the number of bursts of length

greater than or equal to m. If the burst lengths were indeed 1-geometricaUy

distributed with parameter l/B, then the expected value of Nm/N n would be

B-1



E(Nm/N n) - p(l - p)S-I p(l -,p)S-

sam "

= (1 - p)m-n = (1 ----1)m-n

In other words, for N sufficiently large,

i - I/B = (Nm/Nn) i/(m-n) (B-2)

which is a constant.

Since N is only moderately large in the simulations described in Section

III (on the order of 200 to 500), the performance of this test can be improved

by grouping bursts of several consecutive lengths into bins. Enough bursts

were placed into each bin so that i - I/B could be approximated to within 0.05

with 90% accuracy for each bin. These approximations remained reasonably

constant between bins, indicating a successful test.

As remarked in Section IV, waiting times were found, by a similar test,

to be K - 1 geometrically distributed with parameter q - I/(W - K + i), where

is the average waiting time and K is the constraint length of the code.

The geometric model of Viterbl burst-error statistics states that these

bursts occur randomly according to these two modified geometric distribu-

tions. Errors within a burst occur essentially randomly (except for the fact

that each burst starts and ends with an error) with probability 8. To gener-

ate error sequences similar to those produced by a Vlterbl decoder, only the

quantities _, _, and 0 must be knccn. These are tabulated for several codes

and channel SNRs _n Appendix C.
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APPENDIXC

TABLES OF VITERBI DECODER BURST STATISTICS

The following tables give values of some important parameters describing

the burst statistics of Vlterbl decoding. These are the average burst length,
m

B, the average waiting time, W, and the average density of errors in a burst,

8. The tables show the values of these parameters for the DSN (7, 1/2) con-

volutional code as well as for (7, 1/3), (I0, 112), avd (i0, 113) codes. A

range of channel SNRs that is of interest in deep-space applications is

considered.
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